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Background (cont.)

Deep Neural Networks Large Datasets

Training

"""""""" Train dataset #1: “cat-bird” |y
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Testing

Data - Low Stock ...

Meta-Learning Data with Privacy/Copyright

(Schmidhuber et al. ’87, Bengio et al. ’92)

Unseen/Rare Classes
Data hard/costly to collect



Background (cont.)

Meta-Learning: Learning how to learn

’# Few Data Available
O
Few Data Available




Motivation

Meta-Learning:
Learn the global
knowledge shared
by all learners/tasks

Examples of meta-learners

KNN Support Set [Snell et al., 2017]
Distance Metric [Vinyals et al., 2016]
Initialization Point [Finn et al., 2017]
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Motivation (cont.)

Graph Meta-Learning: learn to send message between
learners/tasks on a graph

Can graph be a meta-learner?

" I Few Data Available
O
Few Data Available




Motivation (cont.)

Graph Meta-Learning: |
What’s the graph? R N S
e.g. species in the ﬁn@ S

Crustacesns

Few Data Available

Meta-Learner Few Data Available



Motivation (cont.)

Graph Meta-Learning: [ pe— }
What’s the graph? parasitic diseases

e.g. diseases in "

the classification [Ba“e”a' '"fe°“°"]

coding system [ ‘% |

_— A

[ ICD 01000 ] °coo [ ICD V1201 ] [ ICD 0380 ] °oo0 [ ICD 99592 ]

Can graph be a meta-learner?

Few Data Available

o/
Meta-Learner Few Data Available



Motivation (cont.)

Graph Meta-Learning: : I -
What,s the graph? Products Locations

e.g. merchandise
on an e-commerce - B Seattle
website

—— New York

O
’#Few Data Available
O
Few Data Available

Can graph be a meta-learner?




Which kind of graph do we use ?
How does graph relate to meta-learning?
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LEFT: Visualization of the class prototypes produced by GPN (our model) for few-shot
tasks and the associated graph.
RIGHT: GPN's propagation mechanism for one step: for each node, its neighbors pass
messages (their prototypes) to it according to attention weight a, where a gate further
choose to accept the message from the neighbors g+ or from the class itself g*.



Problem definition: graph meta-learning

We evaluate graph meta-learning methods on the tasks of few-shot classification

e training classes
¢ testing classes
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Traditional few-shot learning setting Our graph meta-learning setting



Gated Propagation Networks

wd —s  Propagate from father
wd ... ..> Propagate from chlldren
d N Self-propagate

a Attention score

Next step propagatlon

Prototype propagation in GPN:

In each step t+1, each class y aggregates
prototypes from its neighbors (parents and
children) by multi-head attention, and chooses
between the aggregated message or the
message from itself by a gate g.



Gated Propagation Networks (Cont.)

J """""" S 1. Initialize prototype: We set the initial
— Pr rom r ; .
: J ~> Propagate from chlldren prOtOtype for eaCh CIaSS y by averaglng
_J_> Self-propagate over all the K-shot samples belonging to
...... .4 .. Atentionscore class y as in prototypical networks:
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Next step propagatlon



Gated Propagation Networks (Cont.)

J N Self-propagate

:a Attention score

Average c

Next step propagation

J —_ Propagate from father
J ed Propagate from childreng

1. Initialize prototype

2. Aggregated messages from its neighbors:
At step t, for each class y, we firstly compute the
aggregated messages from its neighbors Ny
by a dot-product attention module a(p, q), i.e.,

(h1(p), h2(q))
[h1(p)|| x [[h2(q)]l

P, 2 > a(Py, P x Pl a(p,q) =

z E ."\'I’:( J



Gated Propagation Networks (Cont.)

~d—s Propaatefromfather {1 |nitialize prototype
J -S> Propagate from chlldren

_J_> Self-propagate :
a Attentionseore ... 2. Aggregated messages from its neighbors

3. Apply a gate: We apply a gate g to make

ﬁ [] [] []
. decisions of whether accepting messages from
S Average [ P its neighbors or message from itself, i.e.
H, :
)
................................. Nt pr 2 gpitt | (1 - )P'\tiq

exp[y cos(P), P*. )]

exp[y cos( P, Py + exply cos(P), P t\H_W)]’

g:



Gated Propagation Networks (Cont.)

:..d > Propagatefromfather {1, |nitialize prototype
J - Propagate from childreng

d—s Self-propagate

G Mo score o Aggregated messages from its neighbors
3. Apply a gate
HZ
Average —> }:)c
H, Note:
........................................ N To capture different types of relation and jointly
Next step propagation use them for propagation, we combine the

results of k attentive and gated propagation
modules with untied parameters.
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Gated Propagation Networks (Cont.)

Jﬁ Propagate from father 1 Initialize prototype
J D> Propagate from children

_J_> Self-propagate

G Ao © 5 Aggregated messages from its neighbors
3. Apply a gate
H2
Average — }:)c
H, 4. The final prototype is given as the weighted
........................................ S sum of the initial prototype and the refined
Next step propagation prototyp e
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Training Strategy

- Generating training tasks by subgraph sampling: random sampling and snowball sampling.
Random sampling captures strongly-related classes
Snowball sampling captures weakly-related classes

- Building propagation pathways by maximum spanning tree
Only propagate through the most related / close classes according to cosine similarity

- Curriculum learning
Early stage: train on traditional supervised learning tasks
Later stage: train on few-shot learning tasks



Algorithm 1 GPN Training

Input: G = (), F), memory update interval m,
propagation steps 7, total episodes Tyotal;
1: Imitialization: ©°"", PP O/¢ 1+ 0;
2: for 7t € {1, s aTtotal} do
3: if 7 mod m = 0O then
Update prototypes in memory by Eq. (3);
end if
Draw a ~Unif|0, 1];
if o <0.9%°7/7 then
Train a classifier to update ©“"" with loss
Z(w,y)f\,p —log Pr(y|z; ©°"", ©7°);
9: else

Trai n i n g St rategy 10: Sample a few-shot task 7" as in Sec. 3.3;

11: Construct MST Vi, o+ as in Sec. 3.3;

(CO nt) 12: Fory € Vg7, compute P, by Eq. (3) if

y € T, otherwise fetch P, from memory;

XN

13: fort € {1,---,7}do
14: For all y € Y}, <7, concurrently update
their prototypes P; by Eq. (4)-(6);
15: end for
16: Compute P, fory € Vi, ¢ by Eq.(7);
17: Compute log Pr(y|x; ©°"", ©P™°P) by
Eq. (2) for all samples (x, y) in task 7T’
18: Update ©°"*" and OF"°P by minimizing
> —logPr(y|xz; @™, ©PTP);
(z,y)~DT
19:  endif

20: end for




Experimental Results

Table 3: Validation accuracy (mean+CI%95) on 600 test tasks achieved by GPN and baselines on
tieredlmageNet-Close with few-shot tasks generated by random sampling.

Model

Swaylshot

SwaySshot

10waylshot

10waySshot

GNN [6]
Closer Look [3]
PPN [15]

Prototypical Net [23] 42.87+1.67%

42.33+0.80%
35.07£1.53%
41.60+=1.59%

62.684+0.99%
59.17£0.69%
47.48+0.87%
63.04+0.97%

30.65+£1.15%
30.50+£0.57%
21.58+0.96%
28.484+1.09%

48.64+0.70%
44.33+0.72%
28.0140.40%
48.66+0.70%

GPN
GPN+
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48.37+1.80%
50.54+1.67%

64.14+1.00%
65.74+-0.98%

33.23+1.05%
34.74+1.05%

50.50=£0.70%
51.50+£0.70%

Table 4: Validation accuracy (mean+CI%95) on 600 test tasks achieved by GPN and baselines on
tieredlmageNet-Close with few-shot tasks generated by snowball sampling.

tieredimageNet-Close

Model Swaylshot SwaySshot 10waylshot 10waySshot

Prototypical Net [23] 35.27+1.63% 52.60+1.17% 26.08+1.04% 41.48+0.76%

GNN [6] 36.50+1.03% 52.33+0.96% 27.67+1.01% 40.67+0.90%

Closer Look [3] 34.07+1.63% 47.48+0.87% 21.024+0.99% 33.7040.44%

1~4 steps/hops between PPN [15] 36.50+1.62% 52.5041.12% 27.1841.08% 40.97+0.77%

. P P GPN 39.56+1.70% 54.35+1.11% 27.9941.09% 42.5040.76%
training classes and test classes cprn+ 40.78+1.76% 55.47+1.41% 29.46+1.10% 43.76+0.74%




Experimental Results

tieredimageNet-Far

5~10 steps/hops between
training classes and test classes

Table 5: Validation accuracy (mean+=CI7%95) on 600 test tasks achieved by GPN and baselines on
tieredlmageNet-Far with few-shot tasks generated by random sampling.

Model Swaylshot  SwaySshot 10waylshot 10waySshot
Prototypical Net [23] 44.30+£1.63% 61.014+1.03% 30.63+1.07% 47.19+0.68%
GNN [6] 43.67+0.69% 59.334+1.04% 30.17+£0.47% 43.0040.66%
Closer Look [3] 42.27+1.70% 58.784+0.94% 22.00+0.99% 32.734+0.41%
PPN [15] 43.63+1.59% 60.204+1.02% 29.55+1.09% 46.724+0.66%
GPN 47.54+1.68% 64.20+1.01% 31.84+1.10% 48.20-+0.69%
GPN+ 47.49+1.67% 64.14+1.02% 31.95+1.15% 48.65+0.66%

Table 6: Validation accuracy (mean+CI%95) on 600 test tasks achieved by GPN and baselines on
tieredlmageNet-Far with few-shot tasks generated by snowball sampling.

Model Swaylshot  SwaySshot 10waylshot 10waySshot
Prototypical Net [23] 43.57+£1.67% 62.35+1.06% 29.88+1.11% 46.484+0.70%
GNN [6] 44.00+1.36% 62.00+£0.66% 28.504+0.60% 46.17+0.74%
Closer Look [3] 38.37£1.57% 54.644+0.85% 30.40+1.09% 33.7240.43%
PPN [15] 42.40+£1.63% 61.37+1.05% 28.67£1.01% 46.024+0.61%
GPN 47.74+1.76% 63.53+1.03% 32.94+1.16% 47.43+0.67%
GPN+ 47.58+1.70% 63.74+0.95% 32.68+1.17% 47.44+0.71%




Ablation Studies

Table 7: Validation accuracy (mean+CI%95) for possible variants of GPN on tieredImageNet-Close

for 5-way-1-shot tasks. Original GPN’s choices are in bold fonts. Details of the variants are given in
Sec. 4.5.

Task Generation| Propagation Mechanism Training Model
SR-S S-S R-S |[N—C F—C C—C B—P M—P|AUX MST M-H M-A A-A

v v
v v

’ ACCURACY ‘

46.20+1.70%
49.334+1.68%

42.60+1.61%
37.90£1.50%
47.90+1.72%
46.90+1.78%

41.87£1.72%
45.831+1.64%

49.40+1.69%
46.74+1.71%

50.544+1.67%
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Visualization
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Visualization (Cont.)
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Visualization (Cont.)
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Visualization (Cont.)
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Prototypes before (top row) and after GPN propagation (bottom row) on tieredlmageNet-
Close by random sampling for 5-way-1-shot few-shot learning. The prototypes in top row
equal to the ones achieved by prototypical network. Different tasks are marked by a
different shape, and classes shared by different tasks are highlighted by non-grey colors.

It shows that GPN is capable to map the prototypes of the same class in different tasks to
the same region. Comparing to the result of prototypical network, GPN is more powerful in
relating different tasks.



Visualization (Cont.)

Case 1 before propagation

Case 2 before propagation

Case 3 before propagation

Case 4 before propagation

8.0 1
X ¢ 4 141 . X 21.5 A X
12.5 1 7.5 PY Yorkshire tekier. [} &ome X PY A
A 131 VA A 21.0 A
12.0 1 lavthi 701 A Yorkshire terrie ® i
@ PplaythinggPlaything % 124 X o| 20574 &Stablishment
] i 6.5 - X . )
115 N . laything AYorkshwe’erru-:‘r n Py 20.0 1 )éastablishnﬂznt °
11.0 1 x X A 607 A 19.5
5.5 - 10 ome A i X
10.5 A x % e 19.0 4 Aestabllshment
: : : J 5.0 : : . 9 : : : : : : : : e
18 19 20 21 22 21 22 23 16 17 18 19 7.5 8.0 8.5 9.0 9.5
Case 1 after propagation Case 2 after propagation Case 3 after propagation Case 4 after propagation
° -5.01 ° -7 X A
—74 @ =21 A x
-5.51 —81 A A
Yorkshire terri A o ° - éstablishment
orkKsnire terrier - 4 X
—8 X —6.0 1 .&Yorkshire terrier -9 X &%( establishment
plaything ~ _ ) ‘)ome establishm
) plaything A orkshire terrier X —23 P
=91 ® plaything -6.5 - A e % | -10- P
[ pom ®
A X X A X —24
— p —11 4 pom °
—10 1 XA 7.0 A 5 11 y
- : : : : : : : R : A5l : : : :
—25.0 —24.5 —24.0 —23.5 —=23.0 —=22.5 —22.0 -21 -20 -19 -18 -17 -19 -18 -17 -16 -15 -14 -13.0 -12.5 -12.0 -11.5 -11.0
Case 5 before propagation Case 6 before propagation Case 7 before propagation Case 8 before propagation
>$00t A X —14 o
271 X —61 A
—4 o bramb\m% X —2
x A ° . N
26 -7 A )
X % A lock >Pramblmg _3 .
=51 ¢r00t x YY) N X P ° X 0® X
25 1 lock —8
X oot A o ©® A Jock =41 A X
=61 A 24
T _g brambling e
° X 9 AT,y Ux 5 A
-22 -21 -20 -19 -18 -6 -5 -4 -3 -2 16 17 18 19 -19 -18 -17 -16
Case 5 after propagation Case 6 after propagation Case 7 after propagation Case 8 after propagation
6 1 °
7.00 1 ® . loclg ok e °
—231 locA X
6.75 - X 5 |
NeUY A ) A A
6.50 —24 4 ¢ 6 1 X &
X Aeg a 4 41
6.25 X X [ A
oot 25 - X < X X
6.00 - A : brambling X A 3 A
A ‘oot bramblmg& A X
5.75 ° -26 1 A ® .
ramplin i
5.50 ° A 4+ ¢ 9 2 °
16.5 17.0 17.5 18.0 185 19.0 195 65 70 75 80 85 90 95 -23 -22 -21 -20 19.0 195 20.0 205 21.0 21.5
Case 9 before propagation Case 10 before propagation Case 11 before propagation Case 12 before propagation
° A 6
22 A 13 A 13 4 x o X % ®
x A
X
12 X % 5 A o
21 1 A x X 121 A A A
X A X
11 - ° A ° 4+
® ¢ ) 11
20 J .
° 4 °
10 - 3 °
191 @ X 10 .
-16 -15 -14 -13 -19 -18 -17 -16 -13.0 -12.5 -12.0 -11.5 -11.0 23 24 25




Visualization (Cont.)
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%ﬁ Takeaways

* A novel problem: Graph Meta-learning, which learns to
send message between learners/tasks on a graph.

* A meta-learning method based “Learning to Propagate”,
where the propagation scheme on the graph is a meta-
learner.

* Two new benchmark datasets for the new problem and
thorough experiments for comparison, ablation and
visualization.

For more, refer our paper at https://arxiv.org/abs/1909.05024
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