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INTRODUCTION OVERVIEW : AN INTUITIVE UNDERSTANDING OF GRAPH META-LEARNING
We show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., = 4 . ® center class Pl‘Opagatlon Stept
classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has X/ @ hop-1 neighbors 5 e i
rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated =34 ; @® hop-2 neighbors . |l§§ :
for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce ar %/ ® hop-3 neighbors i
“"Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the | ya\ .&’ HOB= REIGhYOTS
graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is =5 | LN <
used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated & astronomical telescope / | | | Propagate
messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated ’ﬁ/ from Father ™ 4 =8
by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life- N missile weapon instrument of [ Sci——>tele
long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough =] — N |
evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases. - ! TR
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At step t, for each class y, we firstly compute the aggregated messages from = > — % 7 : e
_ 'ts neighbors Iy by a dot-product attention module a(p. ). 1., LEFT: Visualization of the class protot duced by GPN for few-shot tasks and th ated graph. RIGHT: GPN'
: prototypes produced by or few-shot tasks and the associated graph. : S
A , (h1(p), ha(q)) propagation mechanism for one step: for each node, its neighbors pass messages (their prototypes) to it according to attention
Pyt 2 ) a(P), P x Pl alp.q) = | . _
H, y Y Ty oz zy AP, 4 ||h ())” y ||h (()” | weight a, where a gate further choose to accept the message from the neighbors g+ or from the class itself g*.
Average [~ P c zeN, 17 2\q
> Then we apply a gate g to make decisions of whether accepting messages R RO R RSO
......................................... e from its neighbors p!#! or message from itself P!t e, . .. . Validation accuracy (mean+Cl%95) on 600 test tasks achieved by GPN and baselines on
Next step pl‘Opagatwn Nu=y Y Generating tr_alnlng tasks by Subgraph sampling: tieredlmageNet-Close with few-shot tasks generated by random sampling.
g" ck kg 1 pi - exply cos(PY, PI41)] random sampling and snowball sampling.
fay as, P, 9P, 5, + (1—g)Py ~,,, 9= exply cos(PY, PLELY] + exply cos(PY, PLL, ]’ Random sampling captures strongly-related classes Model Swaylshot ~ SwaySshot  10waylshot 10waySshot
‘ ' I y—y plyc Ny—y Snowball sampling captures weakly-related classes Prototypical Net [23] 42.874+1.67% 62.684+0.99% 30.65+1.15% 48.644+0.70%
T : : . : GNN [6] 42.33+0.80% 59.17+£0.69% 30.50+0.57% 44.33+0.72%
0 capture different types of relation and jointly use them for propagation, we Closer Look [3] 35.07+1.53% 47.4840.87% 21.58+0.96% 28.01-£0.40%
aggregate k attentive and gated propagation modules with untied parameters Building propagation pathways by training on PPN [15] 41.604+1.59% 63.044+0.97% 28.48-+1.09% 48.66--0.70%
o maximum spanning trees GPN 48.37+1.80% 64.14+1.00% 33.23+1.05% 50.50-£0.70%
Prototype propagation in GPI. P = Z P, Only propagate through the most related / close GPN+ 50.54-1.67% 65.7410.98% 34.74+1.05% 51.5040.70%
in each step t+1, each class y aggregates g k i1 classes according to cosine similarity
Eiri(?ltiorgr?)e} S g;/omrr:ﬁtir-]ﬁlegah dborastt(epna;irs:’ts 2:3 The final prototype is given as the weighted sum of the initial prototype and _ _ See our paper for more results on tieredlmageNet-Close and tieredlmageNet-Far by
chooses between the aggregated méssage the refined prototype: Curriculum Iear_nlng different subgraph sar_nplipg strategies:.random sampling and snowball sampling.
h trom itself b ; A 0 T Early stage: traditional supervised learning tasks We found 1) propagation is more effective between close classes
or the message irom Iisell by a gate g. Py = \ X RU -+ (1 — /\) X RU Later stage: train on few-shot learning tasks 2) propagation improves.the performance both when discriminating between close
classes (snowball sampling) and far classes (random sampling)




