
We show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g.,
classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has
rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated
for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce
``Gated Propagation Network (GPN)'', which learns to propagate messages between prototypes of different classes on the
graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is
used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated
messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated
by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-
long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough
evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

INTRODUCTION OVERVIEW : AN INTUITIVE UNDERSTANDING OF GRAPH META-LEARNING

MODEL: GATED PROPAGATION NETWORK

TRAINING STRATEGIES

Learning to Propagate for Graph Meta-Learning !University 𝑜𝑓 Technology Sydney

5University 𝑜𝑓 Washington𝐿𝑢 𝐿𝑖𝑢! 𝑇𝑖𝑎𝑛𝑦𝑖 𝑍ℎ𝑜𝑢5 𝐺𝑢𝑜𝑑𝑜𝑛𝑔 𝐿𝑜𝑛𝑔! 𝐽𝑖𝑛𝑔 𝐽𝑖𝑎𝑛𝑔! 𝐶ℎ𝑒𝑛𝑔𝑞𝑖 𝑍ℎ𝑎𝑛𝑔!

LEFT: Visualization of the class prototypes produced by GPN for few-shot tasks and the associated graph. RIGHT: GPN's
propagation mechanism for one step: for each node, its neighbors pass messages (their prototypes) to it according to attention
weight a, where a gate further choose to accept the message from the neighbors g+ or from the class itself g*.

g+ g+g+

g+ g+

g*

a1 a2 a3

a4 a5

g+ g+g+

g+ g+

g*

a1 a2 a3

a4 a5

Propagate from father
Propagate from children

Self-propagate

c

g+ g+g+

g+ g+

g*

a1 a2 a3

a4 a5

M
ul

ti-
he

ad
 p

ro
pa

ga
tio

n 

Average

H1

H2

H3

Pc

a Attention score

Next step propagation
P*c

Prototype propagation in GPN:
in each step t+1, each class y aggregates
prototypes from its neighbors (parents and
children) by multi-head attention, and
chooses between the aggregated message
or the message from itself by a gate g.

An initial prototype for each class y by averaging over all the K-shot samples 
belonging to class y as in prototypical networks:

At step t, for each class y, we firstly compute the aggregated messages from 
its neighbors Ny by a dot-product attention module a(p, q), i.e.,

Then we apply a gate g to make decisions of whether accepting messages
from its neighbors or message from itself , i.e.

To capture different types of relation and jointly use them for propagation, we 
aggregate k attentive and gated propagation modules with untied parameters 

The final prototype is given as the weighted sum of the initial prototype and 
the refined prototype:

EXPERIMENTAL RESULTS

See our paper for more results on tieredImageNet-Close and tieredImageNet-Far by 
different subgraph sampling strategies: random sampling and snowball sampling.
We found 1) propagation is more effective between close classes 
2) propagation improves the performance both when discriminating between close 
classes (snowball sampling) and far classes (random sampling)

Generating training tasks by subgraph sampling: 
random sampling and snowball sampling.
Random sampling captures strongly-related classes 
Snowball sampling captures weakly-related classes

Building propagation pathways by training on 
maximum spanning trees
Only propagate through the most related / close 
classes according to cosine similarity

Curriculum learning
Early stage: traditional supervised learning tasks
Later stage: train on few-shot learning tasks

Validation accuracy (mean±CI%95) on 600 test tasks achieved by GPN and baselines on 
tieredImageNet-Close with few-shot tasks generated by random sampling.


