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Instructions for
reading this poster

Are you familiar with 
zero-shot learning?

Yes

No Go to 1. for problem introduction

We train a propagation scheme and a similarity metric on 
a set of training tasks. For a new task:
1. Initialize the nodes features: the attribute vectors of 

different classes  are represented by different-colored 
dots. Each attribute vector is associated with some 
images from the corresponding class. 

2. Determine the graph edges: Two nodes on the 
propagation graph are connected by an edge if the 
similarity between their feature vectors exceeds a pre-
determined threshold. 

3. Propagation on the graph: The node features are 
propagated by an attention mechanism for steps. 

4. Zero-shot prediction: After propagation, we achieve an 
attribute representation for each class. Given a query 
image’s representation, we compute its similarity to all 
the candidate classes’ attribute representations by 
using a meta-trained similarity metric and predict its 
class as the one with the largest similarity.

Visualization of the refined attribute vector per class
produced by APNet using t-SNE and the graph of classes
generated based on given semantic embedding per class.
The red nodes and blue nodes are the propagated attribute
vectors for training classes and test classes, respectively.

4. MAIN RESULT

3. ATTRIBUTE PROPAGATION ON THE GRAPH
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Before propagation: The nodes with different colors
represent different classes and the node features are the
attribute features X of the associated class. Propagating
the node features (attributes): Propagation computes a
weighted sum of its neighbors’ node features, where the
weights are produced by an attention module.

propagation

attention

Go to 2. for pipeline of our method and 3. for more details Go to 4. & 5. for experiment results

Thank you for reading our poster !

Table 1: Datasets Statistics. “#*” denotes the number of *. Tr-S, Te-S and Te-U denotes seen classes in training, seen classes in
test and unseen classes in test, respectively.

Dataset Granularity #Attributes #Seen classes #Unseen classes #Imgs(Tr-S) #Imgs(Te-S) #Imgs(Te-U)

SUN fine 102 645 72 10,320 2,580 1,440
CUB fine 312 150 50 7,057 1,764 2,967
AWA1 coarse 85 40 10 19,832 4,958 5,685
AWA2 coarse 85 40 10 23,527 5,882 7,913
aPY coarse 64 20 12 5,932 1,483 7,924

Table 2: Performance comparisons for generalized zero-shot learning between our method and baselines on five datasets, where
“S” denotes per-class accuracy (%) for seen classes, “U” denotes per-class accuracy (%) for unseen classes and “H” denotes
harmonic mean of “S” and “U”. Parts of the results are from (Xian et al. 2019).

Methods
SUN CUB AWA1 AWA2 aPY

S U H S U H S U H S U H S U H

DEVISE (Frome et al. 2013) 27.4 16.9 20.9 53.0 23.8 32.8 68.7 13.4 22.4 74.7 17.1 27.8 76.9 4.9 9.2
CONSE (Norouzi et al. 2013) 39.9 6.8 11.6 72.2 1.6 3.1 88.6 0.4 0.8 90.6 0.5 1.0 91.2 0.0 0.0
SYNC (Changpinyo et al. 2016) 43.3 7.9 13.4 70.9 11.5 19.8 87.3 8.9 16.2 90.5 10.00 18.0 66.3 7.4 13.3
SAE (Kodirov, Xiang, and Gong 2017) 18.0 8.8 11.8 54.0 7.8 13.6 77.1 1.8 3.5 82.2 1.1 2.2 80.9 0.4 0.9
DEM (Zhang, Xiang, and Gong 2017) 34.3 20.5 25.6 57.9 19.6 29.2 84.7 32.8 47.3 86.4 30.5 45.1 75.1 11.1 19.4
RN (Sung et al. 2018) - - - 61.1 38.1 47.0 91.3 31.4 56.7 93.4 30.0 45.3 - - -
PQZSL (Li et al. 2019) 35.3 35.1 35.2 51.4 43.2 46.9 70.9 31.7 43.8 - - - 64.1 27.9 38.8
CRNet (Zhang and Shi 2019) 36.5 34.1 35.3 56.8 45.5 50.5 74.7 58.1 65.4 78.8 52.6 63.1 68.4 32.4 44.0

APNet(ours) 40.6 35.4 37.8 55.9 48.1 51.7 76.6 59.7 67.1 83.9 54.8 66.4 74.7 32.7 45.5

have 50 animals classes with pre-extracted feature represen-
tations for each image. CUB is also a subset of ImageNet
with images of 200 bird species (mostly North American).
SUB is a Scene benchmark containing 397 scene categories.
aPY is a small dataset including 32 classes. Detailed statis-
tics are provided in Table 1.

5.2 Implementation Details

For a fair comparison with baselines, we followed (Xian et
al. 2019)’s implementation and used a pre-trained ResNet-
101 (He et al. 2016) on ImageNet-1K to extract 2048-
dimensional image features with no fine-tuning on the back-
bone. We trained our APNet with Adam (Kingma and Ba
2015) for 360 epochs with weight decay factor of 0.0001.
The initial learning rate was 0.00002 with a decrease of 0.1
every 240 epochs. The number of iterations in every epoch
under an N -way-K-shot training strategy was kX trk/NK,
where N was 30 and K was 1 in our exeperiments. The tem-
perature �1 was 10 and �2 was 30. Transformation functions
gi and f were linear transformations. The threshold for con-
necting edges was set to cosine40o ⇡ 0.76. All nonlinear
functions were ReLU except for �, which was implemented
using Sigmoid to map the result between 0 and 1.

5.3 Evaluation Criterion

To mitigate the bias caused by imbalance of test data for ev-
ery class, following the most recent works (Xian et al. 2019),
we evaluate the APNet’s performance according to averaged
per-class accuracy:
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1

|Y|
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(x,y)2Dy

[by = y], (9)

where Dy is the dataset of the data-label pairs for class
y, and by is the prediction of the image feature representa-
tion x. We measured the overall accuracy of the data in the
seen and unseen classes in terms of the harmonic mean of
the per-class seen accuracy ACCYseen and unseen accuracy
ACCYunseen following previous works (Xian et al. 2019):
H = 2⇤ACCYseen⇤ACCYunseen

ACCYseen+ACCYunseen
.

5.4 Experimental Results

Generalized Zero-shot Learning.

With generalized zero-shot learning, the setting is to classify
samples (x, y 2 Yseen [ Yunseen) from both seen and un-
seen classes while training on samples (x, y 2 Yseen) from
seen classes. The comparison results for APNet and other
baselines are shown in Table 2.

Classical zero-shot learning methods, e.g., CMT,
CONSE, usually suffer from the imbalance problem be-
tween the training and testing stages. Their models perform
well on the seen classes but the per-class accuracy on the
unseen classes is low, with some models even achieving
close to 0% per-class accuracy. It is challenging to achieve
competitive results on every dataset for the generalized
zero-shot learning due to the imbalanced accuracy for seen
classes and unseen classes because of model overfitting
to samples from the seen classes. Our APNet outperforms
state-of-the-art results on all five datasets. Our model
achieves better results especially on datasets extracted from
ImageNet, i.e., CUB, AWA1, AWA2, and achieves over 3
points improvements on the overall criterion (H) for both
seen and unseen accuracy, and consistent improvements on
the unseen accuracy of up to ⇠ 3%.
Zero-shot Learning.

The setting with zero-shot learning is to classify samples (x,

Figure 3: The pipeline of attribute propagation. 1. Initialize the nodes features: the attribute vectors of different classes are
represented by different-colored dots. Each attribute vector is associated with some images from the corresponding class. The
features of nodes on the propagation graph are initialized by transforming the attributes using the expert modules from (Zhang
and Shi 2019). 2. Determine the graph edges: Two nodes on the propagation graph are connected by an edge if the simi-
larity between their feature vectors exceeds a pre-determined threshold. 3. Propagation on the graph: The node features are
propagated by an attention mechanism. 4. Zero-shot prediction: After propagation, a similarity metric is learned between the
propagated context-aware/structure-aware attributes representations and a query image feature representation. The class with
the largest similarity between the attribute vector after propagation and the query image’s embedding in the attribute space are
regarded as the predicted class.

given a learned similarity metric, ZSL is cast into a re-
trieval task, where the label is determined by retrieving
the associated attributes from a set of candidate vectors
based on the learned transformation (Frome et al. 2013;
Akata et al. 2015a; 2015b; Romera-Paredes and Torr 2015;
Kodirov, Xiang, and Gong 2017; Xian et al. 2016; Socher
et al. 2013). An implicit relationship between seen and un-
seen classes is that the properties of the unseen classes can
be regarded as a mixture of properties of the seen classes.
For example, a mixture of the semantic features of the seen
classes (Norouzi et al. 2013) or a mixture of the weights of
some phantom classes trained on the seen classes (Chang-
pinyo et al. 2016).

More recently, researchers start to integrate knowledge
graph with zero-shot recognition (Wang, Ye, and Gupta
2018; Kampffmeyer et al. 2019). They use graph convolu-
tional network (GCN) which relies on a given knowledge
graph to provide adjacency matrix and edges. In contrast,
we use a modified graph attention network (GAN) (Shen et
al. 2018; 2019), which is capable to learn both the similar-
ity metric and edges by itself even without any pre-defined
graph or metric. Thereby, the propagation scheme learned
in APNet is more powerful in modeling intra-task relation-
ships and can be applied to more practical scenarios. For
this reason, they cannot be applied to most ZSL benchmark
datasets, which do not provide graphs. Their output of GCN
is a fully connected layer per class, as a single-class classi-
fier, that aims to approximate the corresponding part of the
last layer of a pre-trained CNN, while our output of APNet
is a prototype per class, from which we build a KNN clas-
sifier for each task. Hence, they need the CNN to be able to
predict all the possible classes for all few-shot tasks. In con-
trast, we do not require any ground truth for the per-class
classifier/prototype, so any pre-trained CNN can be used to
provide features for APNet.

Our idea of attribute propagation is inspired by belief
propagation, message passing and label propagation. It is
also related to Graph Neural Networks (GNN) (Henaff,
Bruna, and LeCun 2015; Wu et al. 2019), where convo-
lution and attention are iteratively applied over a graph to

construct node embeddings. In contrast to our work, their
task is defined on graph-structured data, i.e., node classi-
fication (Hamilton, Ying, and Leskovec 2017), graph em-
bedding (Pan et al. 2018), and graph generation (Dai et
al. 2018). We only use the relationships between the cate-
gories/classes and build a computational graph that passes
messages along the graph hierarchy. Our training strategy is
inspired from the meta-learning training strategy proposed
in (Santoro et al. 2016), which have been broadly used
in the meta-learning and few-shot learning literature (Finn,
Abbeel, and Levine 2017; Snell, Swersky, and Zemel 2017;
Dong and Yang 2019), especially graph meta-learning (Liu
et al. 2019a; 2019b). However, this paper addresses zero-
shot learning problem by training a novel model, i.e., AP-
Net.

3 Problem Formulation

Zero-shot learning aims to learn a model that is generaliz-
able to new classes or tasks whose semantic attributes are
given but no training data is provided. For example, the
model is expected to be applied to a classification task over
some seen and unseen classes, The semantic attributes could
have the form of an attribute vector, such as the main color
of the class, or a word embedding of the class names.

Formally, we assume that a training set X tr and a test
set X te are sampled from a data space X . Each training
data x 2 X tr is annotated with a label y 2 Yseen. The
model is tested over X te, which are not only from the seen
classes Yseen but also the unseen classes Yunseen. The chal-
lenge is that the seen and unseen classes have no overlaps:
Yseen \ Yunseen = ;. Hence, the semantic attributes S for
each class is made available during both training and testing
to act as a bridge between training classes and test classes.
Specifically, every class y 2 Yseen [ Yunseen is associated
with a semantic embedding vector sy 2 S.

A direct mapping F : X 7! Y from data to label is diffi-
cult to learn with zero-shot learning because the training and
testing data are non-i.i.d. An alternative is to learn a mapping
from data to the semantic attributes, i.e., F : X 7! S. In
APNet, we learn a parameterized KNN classifier: the model
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Figure 4: One-step of attribute propagation. Before propa-

gation: The nodes, denoted by different-colored circles rep-
resent the different classes and the node features are the
corresponding attribute feature representation of this class,
denoted in the columns. The edges are generated based on
the similarity between every node feature pair. Propagat-

ing the node features (attributes): Propagation computes
a weighted sum of its neighbors node features, where the
weights are produced by an attention module applied to ev-
ery node feature and its neighbors (including itself). After-

propagation: The attribute representations comprise a mix-
ture of attribute representations from neighbors.

The node feature representations are a weighted sum of the
features representations of its neighboring nodes Ny , whose
weights were obtained from the attention mechanism us-
ing Eq. (3). At step t, the propagation proceeds as follows:
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where a
0(·, ·) is the normalized attention score over the

neighbors Ny using softmax with hyper-parameter tempera-
ture � that controls the smoothness of the softmax function:
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The propagation can be applied multiple times to collect
messages from indirectly-connected neighbors and, in so
doing, amass a more comprehensive understanding of the
graph structure. Figure 4 shows an example of one-step
propagation.

4.5 Parameterized KNN for Prediction

In this approach, we learn a similarity metric between an
attribute representation and a query image representation as
the parametric KNN. A learned metric calculates the similar-
ity between the t-th step propagated attribute matrix Xt+1

and the query image feature vectors. Inspired by the concept
of additive attention (Vaswani et al. 2017), the similarity
between an image with feature x and class y is:

h(Xt+1
y ,x) = w�

(1)(W (1)Xt+1
y +W (2)x+ b(1)) + b,

(6)

where W (1), W (2), b, w and b
(1) are learnable parameters,

and �
(1) is a nonlinear activation function. The class whose

propagated attribute vector with the highest similarity to the

image vector is taken as the final prediction. The probability
of predicting x as class y normalized with temperature �2

over a batch of classes YT is:

Pr(y|x;Xt+1) =
exp(�2h(Xt+1

y ,x))
P

z2YT exp(�2h(X
t+1
z ,x))

. (7)

We assume that the attribute propagation does not affect the
associated attribute labels so the label for the propagated at-
tributes is the same as the original associated label before
propagation, i.e., Xt

y is the attribute for class y before prop-
agation while the Xt+1

y is still the attribute for class y after
propagation.

4.6 Training Strategy and Scalability

Training APNet over all the nodes/classes in a dataset would
be too computationally expensive since the size of the at-
tention score matrix grows exponentially as the number
of nodes/classes grows. Moreover, applying a cost con-
straint over the loss computation may make the optimiza-
tion unstable. Hence, for training efficiency, we only sam-
ple a subgraph to apply the propagation per iteration. Ad-
ditionally, to improve the generality of our model to un-
seen nodes/classes, we train APNet on different classifica-
tion tasks in every iteration, so it can quickly adapt to differ-
ent new tasks. This technique was inspired by the training
strategy of meta-learning originally developed for few-shot
learning in (Vinyals et al. 2016). The aim of few-shot learn-
ing is to build a model that can adapt quickly to any new
task with only a few training samples. In contrast, the goal of
zero-shot learning is to learn a model that can generalize to a
new task with only the semantic information provided. How-
ever, we found the idea of meta-learning training strategy de-
signed for fast adaptability could also improve the generality
of our model. Interestingly, this training strategy might also
benefit other models in the literature of zero-shot learning.

In every iteration, a task T is sampled from a task distribu-
tion T . The aim is to minimize the loss for this classification
task based on our APNet model. The training objective is to
minimize the empirical risk:

min
⇥

ET⇠T E(x,y)⇠DT � log Pr(y|x;XT ), (8)

where each task T is defined as a subset of classes YT ✓
Yseen; DT is the distribution of data-label pair (x, y) with
y 2 Yseen; XT is the corresponding propagated attributes
matrix for classes in task T ; ⇥ are the learnable parameters.

5 Experiments

5.1 Datasets

We used five widely-used zero-shot learning datasets in
our experiments: AWA1 (Lampert, Nickisch, and Harmel-
ing 2014), AWA2 (Xian et al. 2019), SUN (Patterson and
Hays 2012), CUB (Welinder et al. 2010) and aPY (Farhadi
et al. 2009). To avoid overlaps between the test sets and
ImageNet-1K, which is used for pretraining backbones, we
followed the splits proposed in (Xian et al. 2019). AWA1,
AWA2 and CUB are subsets of ImageNet. AWA1 and AWA2
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